<u>Topic 1a – Atomic Structure</u> <u>Revision Notes</u>

1) <u>Fundamental particles</u>

- Atoms consist of protons, neutrons and electrons
- Protons and neutrons are found in the nucleus which contains most of the mass of the atom and all of the positive charge
- The neutrons help to reduce repulsion between the positively charged protons
- The electrons are arranged in energy levels (shells) around the nucleus
- The electron arrangement of an element determines its chemical properties i.e. what reactions it does

	Relative mass	Relative charge
Proton	1	+1
Neutron	1	0
Electron	1/2000	-1

2) Mass number and isotopes

- Atomic number = number of protons in the nucleus
 - Mass number = number of protons and neutrons in the nucleus
- Number of neutrons = mass number atomic number
- Number of electrons = number of protons (in a neutral atom)

9	Mass number = 9	Atomic number = 4
Be		
4	4 protons, 5 neutrons, 4 electrons	

3) <u>Isotopes</u>

- Isotopes have the same number of protons but different numbers of neutrons
- For example, chlorine has two isotopes ³⁵Cl and ³⁷Cl. Both have 17 protons but they have 18 and 20 neutrons, respectively
- Isotopes of an element have the same chemical properties because they have the same electron arrangement
- Isotopes of an element may have different physical properties, such as rate of diffusion, because they have different masses

4) <u>Ions</u>

- Ions are formed when atoms gain or lose electrons
- As an atom CI has 17 electrons. A CI⁻ ion has gained one electron so it now has 18
- As an atom Na has 11 electrons. An Na⁺ ion has lost one electron so it now has 10
- Early models of atomic structure predicted that atoms and ions with noble gas electron arrangements should be stable e.g. Cl⁻ has the same electron arrangement as argon and Na⁺ has the same electron arrangement as neon

<u>Topic 1b – Formulae & Equations</u> <u>Revision Notes</u>

1) <u>Formulae</u>

a) Elements

- For most elements the formula is just the symbol e.g. Na for sodium, S for sulphur
- The exceptions are the seven diatomic elements $H_2,\,N_2,\,O_2,\,F_2,\,CI_2,\,Br_2$ and I_2

b) Ionic compounds

- Compounds of a metal and a non-metal are made of ions.
- Metal ions have a positive charge and non-metal ions have a negative charge.
- To work out the formula of an ionic compound
 - Write the formulae of the ions
 - Adjust the number of each ion so that there is no overall charge

Example 1 – magnesium bromide	Example 2 – aluminium nitrate
lons are Mg ²⁺ and Br ⁻	Ions are AI^{3+} and NO_3^{-}
Need 2 x Br ⁻ to balance Mg ²⁺	Need 3 x NO_3^{-} to balance AI^{3+}
Formula is MgBr ₂	Formula is $AI(NO_3)_3$

• The formulae for ions are given on the attached sheet. This sheet is <u>not</u> available in exams so the formulae will have to be learnt.

c) Covalent compounds

- Some formulae for covalent compounds can be worked out from the name.
- The prefix mono- means one, di- means two and tri- means three.
- Therefore, carbon monoxide is CO, silicon dioxide is SiO₂ and sulphur trioxide is SO₃
- Other formulae have to be learnt e.g. ammonia is NH₃ and methane is CH₄

2) Equations

- There are no word equations at A-level. An equation means a balanced symbol equation.
- To write a balanced symbol equation:
 - Identify the reactants and products
 - Write a word equation
 - Write down the formula for each substance
 - Balance the equation by putting numbers in front of formulae
 - Add state symbols (s), (l), (g) or (aq)

Example – marble chips and hydrochloric acid Reactants are calcium carbonate and hydrochloric acid Products are calcium chloride, carbon dioxide and water Calcium carbonate + hydrochloric acid \rightarrow calcium chloride + carbon dioxide + water $CaCO_3 + HCI \rightarrow CaCI_2 + CO_2 + H_2O$ Са 1 1 С 1 1 0 3 3 2 Н 1 CI 1 2 2 in front of HCI balances the equation $CaCO_3 + 2HCI \rightarrow CaCI_2 + CO_2 + H_2O$ Adding state symbols $CaCO_3(s) + 2HCI(aq) \rightarrow CaCI_2(aq) + CO_2(g) + H_2O(I)$

<u>Topic 1c – Calculations</u> <u>Revision Notes</u>

1. Molar Mass

- Molar mass is calculated by adding up the masses of the atoms in the formula
- The percentage of the total made up by a particular element can also be calculated

```
Example - sodium carbonate, Na2CO3Na2 \times 23.0= 46.0C1 \times 12.0= 12.0O3 \times 16.0= 48.0Total= 106.0% by mass of oxygen= 48.0 \times 100/106.0= 45.3\%
```

2. <u>Empirical & Molecular Formulae</u>

- Write down mass or % of each element
- Divide each one by the atomic mass of that element
- Find the ratio of the numbers (divide them all by the smallest one)

In a substance containing only sodium, sulphur and oxygen, the composition is found to be 32.4% sodium and 45.0% oxygen. Calculate the substance's empirical formula.

% sulphur = 100 - 32.4 - 45.0= 22.6% Na S 0 Composition 32.4 22.6 45.0 23.0 32.1 R.a.m. 16.0 Comp/r.a.m. 1.41 0.70 2.81 + by smallest 2.01 1 4.01 Empirical formula is Na₂SO₄

• Molecular formula is a multiple of empirical formula

Empirical formula = $CH_2O \& M_r = 60$. Find molecular formula. Empirical mass = 30 so molecular formula = 2 x empirical formula = $C_2H_4O_2$

3) <u>Atom economy</u>

Atom economy =	Molecular mass of desired product	x 100%	
-	Molecular masses of all products		

Example

Bromoethane, CH₃CH₂Br, reacts with sodium hydroxide to produce ethanol, CH₃CH₂OH.

$CH_3CH_2Br + NaOH \rightarrow CH_3CH_2OH + NaBr$

In the above example

Molecular mass of desired product Molecular masses of all products	= 46.0 = 46.0 + 102.9 = 148.9
Atom economy	= 46.0/148.9 x 100% = 30.9%

- Chemical processes with a high atom economy produce fewer waste materials
- Atom economy can be improved by finding a use for waste product